Genericity and randomness over feasible probability measures
نویسندگان
چکیده
منابع مشابه
Genericity and Randomness over Feasible Probability Measures
This paper investigates the notion of resource bounded genericity developed by Ambos Spies Fleischhack and Huwig Ambos Spies Neis and Terwijn have recently shown that every language that is t n random over the uniform probability measure is t n generic It is shown here that in fact every language that is t n random over any strongly positive t n computable probability measure is t n generic Rou...
متن کاملProbability Measures and Effective Randomness
We study the question, “For which reals x does there exist a measure μ such that x is random relative to μ?” We show that for every nonrecursive x, there is a measure which makes x random without concentrating on x. We give several conditions on x equivalent to there being continuous measure which makes x random. We show that for all but countably many reals x these conditions apply, so there i...
متن کاملEffective Randomness for Computable Probability Measures
Any notion of effective randomness that is defined with respect to arbitrary computable probability measures canonically induces an equivalence relation on such measures for which two measures are considered equivalent if their respective classes of random elements coincide. Elaborating on work of Bienvenu [1], we determine all the implications that hold between the equivalence relations induce...
متن کاملComputability of probability measures and Martin-Lof randomness over metric spaces
In this paper we investigate algorithmic randomness on more general spaces than the Cantor space, namely computable metric spaces. To do this, we first develop a unified framework allowing computations with probability measures. We show that any computable metric space with a computable probability measure is isomorphic to the Cantor space in a computable and measure-theoretic sense. We show th...
متن کاملLowness for Weak Genericity and Randomness
We prove that lowness for weak genericity is equivalent to semicomputable traceability which is strictly between hyperimmune-freeness and computable traceability. We also show that semi-computable traceability implies lowness for weak randomness. These results refute a conjecture raised by several people.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 1998
ISSN: 0304-3975
DOI: 10.1016/s0304-3975(98)00067-x